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SPACE-TIME ANALYSIS OF THE FLOW-INDUCED 
VIBRATION OF A SOLID CONTAINING AN 

EMBEDDED CYLINDRICAL SHELL 

1.   INTRODUCTION 

The analysis of solid bodies with embedded cylindrical shells that contain transported 

fluids is not only pertinent to such mechanical systems as buried steam pipes, sewers, and heat 

exchangers, but also to biological systems, such as the arteries of the human body. The 

response of the solid body is dependent on the forces that the transported fluid exert on the 

surrounding medium. These forces typically cause wave motion in the medium, which, in 

turn, creates a displacement. Understanding the response of the medium is particularly 

important when the displacement and wave motion have undesirable effects. The response of a 

free surface of the medium may also be used to detect and localize the source (energy) 

emissions. The work documented in this report develops the theory and provides the 

experimental data to support detection and localization of flow in an unblocked shell 

surrounded by a lossy medium. Although this type of detection may be useful to surveyors 

trying to locate buried pipes, its primary intent is to locate partially blocked coronary arteries in 

humans. 

In section 2, a model of a solid with an embedded tube containing a moving fluid is 

derived based on the wavenumber (space) and frequency (time) content of the wave motion. 

The model is evaluated at the surface of the solid, which corresponds to the position of a 

beamformed, linear array. The model is developed using the equations of elasticity in 

cylindrical coordinates coupled to a line source that represents the fluid. The medium is 

modeled as a semi-infinite solid that admits propagating shear and compressional wave energy. 

The filtering effects of the array and sensors are also included in the model. 

In section 3, the closed-form solution of the model is compared to experimental data for 

validation. The experiment consists of a solid Hexcel 195-RE urethane block that contains an 

embedded surgical tube (figure 1). This block is an isotropic solid free of bone, tissue, and 
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other biological substances whose behavior cannot be easily resolved. The tube has an inner 

radius of 0.00159 m (1/16 in.), which is the approximate size of a human coronary artery. The 

distance from the surface of the solid to the tube is 0.0191 m (3/4 in.), which is approximately 

the minimum distance from a location on the third intercostal space to the nearest coronary 

artery in a human chest (Norton, 1995). Water is gravity fed into the surgical tube from a 

holding tank and captured below the block in a calibrated flask (figure 2). This technique 

permits measurement of the flow velocity. The moving fluid transmits a relatively small 

normal force into the embedded tube, which, in turn, transmits energy into the solid. This 

energy propagates to the surface of the block, primarily in the form of shear waves where it 

produces a local displacement. 

The data in this experiment were collected with an eight-element array (figure 3) 

designed to detect the extremely small displacements that are typical of experiments with a low- 

level energy source. Each element of the array consists of a piece of stiff plastic mounted on a 

strip of polyvinylidene fluoride (PVDF). The PVDF is a piezoelectric polymer that acts as a 

strain gage when the plastic is displaced. Array technology improves the signal-to-noise ratio 

over single-point measurements and provides directionality to the detection process. 

In section 4, the dynamic behavior of the model is discussed, and the differences 

between the model and the experimental data are examined. 

The model and experiment developed here allow a controlled laboratory setting in 

which array technology is used to conduct tests of arterial flow. This effort provides a 

foundation for future investigations that would address the vibration of shells that include 

partial blockages, nonisotropic blocks, and focused optimal processing (beamforming) 

detection techniques. 
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Figure 1. Urethane Block With Embedded Surgical Tube 
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Figure 2. Laboratory Configuration 
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2.   SYSTEM MODEL AND CLOSED-FORM SOLUTION 

The system model of the dynamic displacement at the beamformer level is 

®(ks,co0)= J|//(/:-^)|2|G(/:)|2|r(/:,a)0)|2|/>w(/:,ö)o)|2^ , (1) 

where ä>(ks,ü)Q) is the beamformed displacement wavenumber-frequency spectrum 

corresponding to the measured output at steered wavenumber it (rad/m) and fixed frequency 

C0Q (rad/s), H(k - ks) is the steered response pattern of the array, G(k) is the response pattern 

of each individual sensor in the array, T(k,0)Q) is the transfer function between the 

displacement of the solid at the surface and the normal pressure of the turbulent boundary layer 

of the fluid acting on the embedded cylindrical shell, P^k,^) is the streamwise turbulent 

boundary layer pressure in the fluid, and k is the wavenumber (rad/m). Each of these terms is 

developed below. 

2.1. THE STEERED ARRAY RESPONSE 

The normalized wavenumber response of a linear array of N discrete sensors can be 

modeled as 

N 

Swn' 
,i(k-ks)xn 

H(k.ks)=n=L 
N (2a) 

where xn is the position of the center of sensor n, and wn is a spatial weighting function (e.g., 

Taylor or Hanning). For this analysis, wn is unity (Boxcar window). For a linearly spaced 

array, the wavenumber response with uniform shading is 

sin 
H(k-ks) = 

'ft*-*,)' 
Nsin f(*-*,) 

(2b) 
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where d is the center-to-center separation distance of adjacent sensors (m). Equations (2a) and 

(2b) assume that the sensors are responding as point sensors. Figure 4 is a plot of equation 

(2b) versus wavenumber. The sensor separation distance (d) is 0.0127 m (0.5 in.) and the 

number of sensors in the array (AO is eight. The main beam of the array has been steered (k) 

to 150 rad/m. The dashed line corresponds to the unaliased region of the array, which is equal 

to ± Kid or ± 247.4 rad/m. 

Unaliased 
Wavenumber 

Region of Array 

T    i    i    |    i    i    i    |    i    i    i    I    i    i—i—I—i—i—i—|—i—r 

-750 -500 -250 0 250 500 750 
Wavenumber (rad/m) 

Figure 4. The Theoretical Beam Response of an Eight-Element 
Array Steered to a Wavenumber of 150 rad/m 
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2.2.    THE INDIVIDUAL SENSOR RESPONSE 

The response of each individual sensor is modeled as 

. fkL 
sin 

G^ = -7W (3) 

where L is the length of the sensor (m). Figure 5 is a plot of equation (3) versus wavenumber. 

The sensor length (L) is 0.0127 m (0.5 in.). The dashed line corresponds to the unaliased 

wavenumber region of the array described in section 2.1. 

Magnitude 

G(k) 

(dB) 

Unaliased 
Wavenumber 

Region of Array 

"T    I     I    T^—i—i—i—i—i—i—i—I—i—i—i—|—i—i—i—n'—i—i—r 

-750 -500 -250 0 250 500 750 
Wavenumber (rad/m) 

Figure 5. The Theoretical Response of a Sensor That Is 0.0127 m Long 



TR 11,073 

2.3.    THE TRANSFER FUNCTION 

The transfer function between the vertical displacement of the solid at the top surface 

and the turbulent boundary layer pressure of the internal fluid is derived by assuming that the 

system is composed of two concentric cylindrical, linear, isotropic mediums, each governed by 

the equation (Timoshenko and Goodier, 1934) 

d u 
/iV2u + (A + /*)VV»11 = 0—*- , (4) 

where p is the density; A and ß are the Lame constants; t is time; • denotes a vector dot 

product; u is the cylindrical coordinate displacement vector expressed as 

ur(r,6,z,t) 

u = - ue(r,e,z,t)i , (5) 

uz(r,6,z,t) 

with subscript r denoting the radial direction, 6 denoting the angular direction, and z denoting 

the axial direction; V is the gradient vector differential operator written in cylindrical 

coordinates as (Potter, 1978) 

„     d .      Id.      d . 
(6) 

with ir denoting the unit vector in the r-direction, id denoting the unit vector in the ö-direction, 

and iz denoting the unit vector in the z-direction; V is the three-dimensional Laplace operator 

operating on vector u as 

with V   operating on scalar u as 

.  vV2 = v.v^z = i| 
,     dr   )   r1    dd1 dz2 (8) 

and the term V • u is called the divergence and is equal to 

„ dur    1 dug    du7    ur 

dr     r 86     dz      r 
(9) 
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The pressure effects of the fluid acting on the interior surface of the inner cylinder are modeled 

as structural loads later in this section. The modeled geometry and the coordinate system of the 

cylinders are shown in figure 6. Note that p, X, and ß are the properties of each specific 

material. When the modeled region is the embedded cylinder (a<r<b), the material 

properties of the surgical tube are used. When the modeled region is the solid block 

(b < r < c), the material properties of the urethane are used. The flat surface of the block is 

modeled as a cylinder, which results in this surface being approximated with a curve. The 

effects of this approximation, which is necessary to obtain a closed form solution of the 

displacement field on the block, are discussed later. 

The displacement vector u is written as 

u=V0+VxH , (10) 

where <p is a dilatational scalar potential, x denotes a vector cross product, and H is an 

equivoluminal vector potential expressed as 

Hr(r,6,z,t) 

H = *He(r,e,z,t) 

H(r,6,z,t) 

(11) 

Expanding equation (10) and breaking the displacement vector into its individual terms yields 

(12) 
_ d<t>    1 dH2    dH9 

Ur~dr + r dd       dz   ' 

"0 
_}_§$_    dHr    dHz 

rdO     dz dr 
(13) 

and 

dtp    HQ    BHQ    IdH. 
dz      r       dr      r dd 

(14) 

10 
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(Not to Scale) 

Figure 6. Modeled Geometry With Coordinate System 

11 
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Equation (10) is next inserted into equation (4), which results in 

«äv2*-^ (15) 

and 

c?V2H = 4* 5 dt2 (16) 

on both the inner and the outer cylinders. The constants cd and cs are the complex dilatational 

and shear wave speeds, respectively, and are determined by 

X + lu. 
c"=ip <17) 

and 

<*=F- (18) 
VP 

The relationship of the Lame constants to the compressional and shear moduli is shown as 

Ev 
1 =  (19) 

(l + u)(l-2u) v   ' 

and 

*=G=2^br <20) 

where E is the complex compressional modulus (N/m2), G is the complex shear modulus 

(N/m2), and v is the Poisson's ratio of the material (dimensionless). 

The conditions of infinite length, axisymmetric response (n = 0), and steady-state 

response are now imposed, allowing the scalar and vector potential to be written as 

^ = g(r)cos(n6)eikzeia)t = g(r)eikzeicot , (21) 

Hr=hr(r)sin(ne)eikzeiox =0 , (22) 

He=he(r)cos(n6)eikzei0*=he(r)eikzei0* , (23) 

12 
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and 

Jkzjcot Hz = hz(r)sm(n6)eliaelux = 0 , (24) 

where k is the wavenumber of excitation, co is the frequency of excitation, and / is the square 

root of -1. Note that equations (21)-(24) are valid on both the inner and the outer cylinders. 

For axisymmetric response, the equations of motion are dependent only on the scalar potential 

<j> and angular contribution HQ of the vector potential. Additionally, because Hr = 0,HZ = 0, 

and HQ and 0 are not functions of 8, equation (13) becomes 

-■§■»• (25) 

where () denotes any function. Inserting equations (21)-(24) into equations (15) and (16) 

yields the following four distinct wave equations on both the inner cylinder and the outer 

cylinder: 

dzg(r) | 1 dg(r) | 

dr' r   dr 2 g(r) = 0 , 

d%(r) { 1 dhr(r) { 

dr' dr 

\ 

(,.3. d'hpfjr) i 1 dhpjr) |   6T _k2 

dr' dr 

and 

d%(r) ^ 1 dhz(r) | 

dr' dr 

\cs 

(«?■ 

\ cs 

K(r) = Q , 

he(r) = 0, 

(26) 

(27) 

(28) 

A 
fh(r) = 0 . (29) 

The solutions to equations (26) and (28) are now found on both cylindrical domains 

with Bessel functions. No solution is found to equations (27) and (29) because they do not 

contribute to the axisymmetric response. The solution to equation (26) is 

13 
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ClJ0(air) + C2Y0(alr)       a<r<b 

g(r) = > , (30) 

C5J0 (a2r) + C6YQ (cc2r)       b<r<c 

where 70 is 
a complex, zero-order, first-kind Standard Bessel function; YQ is a complex, zero- 

order, second-kind standard Bessel function; Cl5 C2, C5, and C6 are complex constants 

(determined below); «j is defined on the inner cylinder as 

«i^rr-*2 ' (31) 

where the subscript d\ refers to the complex dilatational wave speed in the inner cylinder; and 

CK2 is defined on the outer cylinder as 

cc2=j^—k2 , (32) 

where the subscript d2 refers to the complex dilatational wave speed in the outer cylinder. The 

solution to equation (28) is 

CiMM + CMifar)       a<r<b 

h&(r) = < , (33) 

C1Jl(ß2r) + QYl(ß2r)       b<r<c 

where /j is a complex, first-order, first-kind standard Bessel function; Y^ is a complex, first- 

order, second-kind standard Bessel function; C3, C4, C7, and C8 are complex constants 

(determined below); ß-^ is defined on the inner cylinder as 

HS-*2' (34) 

where the subscript si refers to the complex shear wave speed in the inner cylinder; and JÖ5 is 

defined on the outer cylinder as 

ß2 = ^-k2 , (35) 
cs2 

14 
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where the subscript s2 refers to the complex shear wave speed in the outer cylinder. 

The strains are related to the displacements in an axisymmetric solid by (Timoshenko 

and Goodier, 1934) 

-^ (36) 

(37) 

(38) 

F     = crr dr   ' 

£ee = ■ ft 
r 

£zz = 
duz 

dz   ' 

and 

_ 1 (duz | dur (39) 
2 ^ dr      dz 

The relationship between the displacements (and the derivatives of the displacements) and the 

potential functions g and hd is found by combining equations (12), (14), (21), and (23) to 

produce 

'dg(r) 
ur = 

dr 
-ikhe(r)\eik*Ja* , 

Mz=^(r)+^+^yv^, 
dur_(d2g(r)    .kdhe(r) 

dr2 dr 

"v 

V dr 
ikzjax 

dz     V r dr   J 

dr 
z _ .kdg{r) i ldhgjr)    he(r) | d%(r) 

dr      r    dr dr' 
eikzeia* 

(40) 

(41) 

(42) 

(43) 

(44) 

and 

H'^'V))'' ikz iax (45) 

15 
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The displacements and external forces are now equated by use of the stress-strain 

constitutive equations on the free surfaces of the cylinders and at the inner and outer cylinder 

interface. The normal stress, strain, and radial forces acting on the inner cylinder at radius a 

are related by 

arr(a,z,t) = (hl + 2ßl)err(a,z,t) + Xieee(a,z,t) + &iezz(a,z,t) = pt(a,z,t) ,    (46) 

where Grr(a,z,t) is the normal radial stress, err(a,z,t) is the normal radial strain, SQQ(a,z,t) 

is the normal circumferential strain, ezz(a,z,t) is the normal longitudinal strain, pi(a,2,t) is the 

internal pressure acting on the cylinder in the radial direction, and the subscript 1 denotes 

material properties of the inner cylinder. The shear stress, strain, and longitudinal forces acting 

on the inner cylinder at radius a are related by 

arz(a,z,t) = 2fi1erz(a,z,t) = fi(a,z,t) , (47) 

where Grz(a,z,t) is the shear stress, erz(a,z,t) is the shear strain, and fi(a,z,t) is the internal 

shear stress acting on the inner cylinder in the longitudinal direction. At the interface of the 

cylinders, the displacements and stresses of the inner cylinder are matched to the displacements 

and stresses of the outer cylinder. These boundary interface equations are written as 

ur(b_,z,t) = u,.(b+,z,t) , (48) 

uz(b_,z,t) = uz(b+,z,t) , (49) 

Grr(b_,z,t) = Grr(b+,z,t) , (50) 

and 

Grz(b_,z,t) = Grz(b+,z,t) , (51) 

where the minus subscript corresponds to equations evaluated using the inner cylinder 

properties and the plus subscript corresponds to equations evaluated using the outer cylinder 

properties. The normal stress, strain, and radial forces acting on the outer cylinder at radius c 

are related by 

Grr(C,Z,t) = (A2 + 2^2)£rr(c>z>0 + ^2£09(c>z>0 + hezz(c>Z,t) = p0(c,Z,t)   ,    (52) 

16 
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where p0(c,z,t) is the external pressure acting on the cylinder in the radial direction, and the 

subscript 2 denotes material properties of the outer cylinder. The shear stress, strain, and 

longitudinal forces acting on the outer cylinder at radius c are related by 

<jrz(c,z,t) = 2p2£rz(c,z,t) = f0(c,z,t)  , (53) 

where arz(c,z,t) is the shear stress, erz(c,z,t) is the shear strain, and f0(c,z,t) is the external 

shear stress acting on the outer cylinder in the longitudinal direction. 

Combining equations (36), (37), (38), (40), (42), and (46) yields the normal stress in 

terms of the potential functions g and he at r = a as 

a,+2ft)4£>^«jgö _Xk2 a)_2fttt^w.„ _ (54) 
dr1       a    dr drL 

where P[ is the magnitude of the normal force acting on the interior of the inner cylinder. 

Combining equations (39), (44), (45), and (47) yields the shear stress in terms of the potential 

functions g and hd at r = a. The result is 

2//!!*-^+ ^k1 -^ ho(a) + £L-2L-L + ßl    ^ ' = /?., (55) 
dr      \ a

L) a     dr drL 

where fj is the magnitude of the externally applied shear stress acting on the interior of the 

inner cylinder. Equations (40) and (48) are combined to yield the radial displacement interface 

equation 

^-»W = ^-*W, (56) 
dr dr 

and equations (41) and (49) are combined to produce the longitudinal displacement interface 

equation 

w+My+4«=,m)+»)+!%(M. (57) 
r dr r dr 

Equations (36), (37), (38), (40), (42), and (50) are combined to yield the normal radial stress 

interface equation 

17 
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drz        b     dr drl 

(V2ft)^W + i«.¥J#+)-2W'^ ,       (58, 
dr b     dr drL 

and equations (39), (44), (45), and (51) are combined to produce the shear stress interface 

equation 

a i 

2Ä*^4^-*W^^ + AI2^ b      dr      '"     dr2 (59) 
dr       y^       bL) 

Combining equations (36), (37), (38), (40), (42), and (52) yields the normal stress in terms of 

the potential functions g and hg at r = c as 

(^ft^ + ^^-AÄM-aw*^^ • (60) drz        c    dr dr1 

where P0 is the magnitude of the normal force acting on the exterior of the outer cylinder. 

Combining equations (39), (44), (45), and (53) yields the shear stress in terms of the potential 

functions g and hQ at r = c. The result is 

2^^M2*2-^W^Ä*2^(£>=F„ , (61) 
dr      V c  ) c     dr drL 

where F0 is the magnitude of the externally applied shear stress acting on the exterior of the 

outer cylinder. Implicit in equations (54)-(61) is the assumption that the external loads on the 

cylinder are occurring at a definite frequency and wavenumber. 

Inserting equations (30) and (33) into equations (54)-(61), applying the recurrence 

relationships of the first- and second-kind standard Bessel functions, and then rewriting as an 

eight-by-eight system of linear equations results in 

18 
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«11 «12 «13 «14 «15 «16 

«21 «22 «23 «24 «25 «26 

«31 «32 «33 «34 «35 «36 

«41 «42 «43 «44 «45 «46 

«51 «52 «53 «54 «55 «56 

«61 «62 «63 «64 «65 «66 

fl71 «72 «73 «74 «75 «76 

«81 «82 «83 «84 «85 «86 

«17 «18 

«27 «28 

«37 «38 

«47 «48 

«57 «58 

«67 «68 

«77 «78 

«87 «88 

[Q] \pi) 

c2 Fi 

Cl 0 

c4 
< 

r5 
.=. 

0 

0 

<k 0 

Ci Po 

taJ kJ 
where the matrix coefficients anm are given as 

«li = [(-Ai -2A*i)a? -A^J/oCai^ + f^^-ViCai«) , 

yoCai^ + f^^-Vi^i«) > «12 = (-A1-2/x1)a1
2-A1Ä:2 

V   a   y 

«15 = 0 , 

«16 = 0 . 

«17=0 , 

«18=0. 

a2\={-2ß\ikai)Jl{aia) , 

a22 = (-2liiikal)Yl(ala) , 

«23 = [Ml(^2-Ä2)]^i(M. 

«24=[Mi(*2-A2)Fi(A«) , 

«25=0 - 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 
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fl26 = 0, (76) 

027=0, (77) 

028=0 > (78) 

(*$\ = -a\J\{tt\b) , (79) 

a32 = -atfiionb) , (80) 

a33 = -/MW). (81) 

fl34=-ttli(Ä6), (82) 

«35 = «2^1 («2^) . (83) 

a36 = a2Yl(a2b) , (84) 

azl=iUl{ß2b) , (85) 

"38 = <«l (/¥>), (86) 

a41=ifc/0(a1ö) , (87) 

a42 = ikY0(alb) , (88) 

ö43 = M)(W. (89) 

044=AW>)> (90) 

a45 = -ild0(a2b) , (91) 

a46 = -ikY0(a2b) , (92) 

047 = -/VoOW> (93) 

««= -£#>(&*). (94) 

«51 = [Ml "2/^l)«? " A^2]/0(«iö) + {^f^hiafi) , (95) 

«52 = [(-Ai - 2^)«? - A^2]^«^) + (Ä^a^) , (96) 
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o53 = i-lftikßOJoihb) + ^^y^b) , (97) 

oM = (-2/JnikßOYoißib) + {^y^ßyb) , (98) 

a55 = [(A2 + 2ß2)4 + ^k2]j0(a2b) - {^f^hi^b) ,                           (99) 

056 = [ih + 2/i2)«2 + A2*2]y0(a2&) - [^fty\((*ib) ,                         (100) 

057 = (2/i2i*Ä)/0(Ä*)" (^)-/l(^) , (101) 

058 = (2ß2ikß2)Y0(ß2b) -{^tX^frb) , (102) 

06!= (-2/417:0! Wcqö) , (103) 

062 = (-2/ii/toi)71(a1Z)) , (104) 

fl63=Uil(*2-A2)WA*). (105) 

a64=[//1(^
2-i31

2)]r1(j31ö), (106) 

065 = (2p2ika2)Jx(a2b) , (107) 

066 = (2ß2ika2)Yl(a2b) , (108) 

«67=[-A*2(*2-02)W02*) , (109) 

^68 =H<2(*2 -ßlWxihb) , (110) 

071 =0, (111) 

072=0, (112) 

073=0, (113) 

074=0, (114) 

a15=[(-^-2ß2)al-l2k
2]j0(a2c) + ^^yi(a2c) ,                      (115) 
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fl76 = (-A2 - 2\i2)a
2

2 -^k2]Y0(a2c) + {^M^y^o^c) , (116) 

a77 = (-2ß2ikß2)J0(ß2c) + {^.y^c) ,                                          (117) 

ö78 = (-2fi2ikß2)YQ(ß2c) + pÖ^fcc) ,                                            (118) 

<%1=0, (119) 

fl82=0, (120) 

«83=0, (121) 

ö84=0, (122) 

aS5 = (-2ß2ika2)Jl(a2c) , (123) 

fl86 = (-2n2ika2)Yi(a2c) , (124) 

«CT^C^-^WÄ*). (125) 

and 

aw=lH2(k2-(%Wi(fa) ■ (126) 

The interior pressure field pi at the inner cylinder a is now broken into two components: 

one models the normal wall pressure in the turbulent boundary layer and the other models the 

acoustic pressure in the fluid. This interior pressure term is written as 

Pi(a,z,t) = ptbl(a,z,t)-p(a,z,t) , (127) 

where the subscript tbl denotes the term associated with the turbulent boundary layer and is 

discussed in the next section. The acoustic pressure in the fluid is derived from the wave 

equation written in cylindrical coordinates as 

d2p(r,z,t)      2 
dt7 = c 

dLp(r,z,t) { 1 dp(r,z,t) | dzp{r,z,t) 
dr2 r      dr dz2 (128) 
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where c, is the compressional wave speed in the fluid (m/s). The assumption is made in 

equation (128) that Mach number effects on the wave equation are negligible because the fluid 

is flowing at a sufficiently slow speed. The boundary condition on the fluid/structure interface 

is written, using conservation of linear momentum, as 

dp{a,z,t) _        d\{a,z,t) 

The acoustic pressure field is modeled as a magnitude with definite frequency and wavenumber 

content as 

p(r,z,t) = P(r)eikzeia* . (130) 

Inserting equation (130) into equation (128) yields 

P(r) = 0. (131) 
d2P{r) [ ldP(r) {

f"2      -^ 
^--lc2 

2 
Cf 

dr2       r   dr 

The solution to equation (131) is 

P(r) = C9J0(r) , (132) 

where C9 is a constant (shown implicitly in equation (135)) and 

\0>2     ,2 

''■ff-*  ■ <133> 

It is implicit in the solution to equation (131) that the pressure in the interior fluid is finite. 

Writing the radial displacement as 

ur(r,z,t) = Ur(r)eikzei0* (134) 

and then inserting equation (132) into the boundary condition (equation (129)) yields 

-PfO)2Jr\(')a) 
F^wTu^ ■ (135) 

It is now noted, based on equations (12), (30), (33), (40), and (134), that 

Ur(a) = -C^J^axa) - C2alYl(a]a) - CykJ^faa) - C^ikY^a) . (136) 
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Combining equations (135) and (136) yields 

.2 
D, x   ^ Pf<» JoMaiMaia)        pfco'-J0(ya)alYl(ala) 
r{a) = Ci 1- Co  

yj^ya) yJ^ya) 

pf(o2J0(}a)ikJi(ßia)        pf(o2jQ(yayikYi(ßiä) 
+ Ci — + C4 —  (137) 

Equation (137) is inserted into equation (62), which results in the A matrix coefficients an, 

al2, a^, and a14 being modified to 

an = (-Ai - 2ßx)a
2 - Xxk

2 \J0(ccia) + 
(2pyax    Pf(Q2Jo(ya)a\^ 

a yJ\{ya) 

«12 = [{-h - 2^i)«? - A^2]y0(«ia) ■ 

J\(axa) , 

2/ft«!   Pf(o2JQ{.ya)a^ 

\ 
a 

al3 = (-2plikp\)J0(p\a) + 
(2pxik    PfCQ2J0(ya)ik^ 

a yJx(ya) 

yhiya) 

hip\a) , 

Yx(axa) , 

(138) 

(139) 

(140) 

and 

aXA={-2ßxikßx)Y0{ßxä) + 
v   a yJx(ya)     J nH1 (141) 

The remaining terms in the A matrix are unchanged. Additionally, the external shear stresses at 

a and c and the external normal pressure at c are assumed to be equal to zero, resulting in a load 

vector of 

lptbl 

0 

0 

0 

0 

0 

0 

0 

(142) 
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Now that the A matrix and the load vector are known, a solution to the constants Cj through 

C8 can be determined by inverting the A matrix and multiplying it by the load vector in 

equation (142). Once the constants are known, the radial displacement at c divided by the 

interior turbulent boundary layer pressure can be determined with an expression similar to 

equation (136): 

T(k,co0) = ¥£$■ = -C5a2/i(a2c) - C6a2Yl{a2c) - Cyikl^fo) - CtfkY^foc) .      (143) 
Ftbl 

Figure 7 is a plot of the transfer function of radial displacement divided by the turbulent 

boundary layer pressure versus wavenumber. The frequency of the transfer function is 250 

Hz, the inner radius (a) is 0.00159 m (1/16 in.), the middle radius (b) is 0.00238 m (3/32 in.), 

and the outer radius (c) is 0.00191 m (3/4 in.). For the inner cylinder, the dilatational 

(compressional) modulus (£j) is (l+0.18i) x 106 N/m2, the Poisson's ratio (t>j) is 0.49 

(dimensionless), the shear modulus (G{) is 3.4(1+0.18i) x 105 N/m2, and the density is 1000 

kg/m3. For the outer cylinder, the dilatational modulus (E2) is 1.9(l+0.30i) x 105 N/m2, the 

Poisson's ratio (V2) is 0.49 (dimensionless), the shear modulus (G2) is 6.4(l+0.30i) x 105 

N/m2, and the density is 930 kg/m3. The speed of a compressional wave in the fluid (cj) is 

1500 m/s and the density of the fluid (pß is 1000 kg/m3. Note that the dynamic range of the 

magnitude of the transfer function is approximately 100 dB in the wavenumber range -750 < k 

< 750 rad/m. The relative minima in the transfer function that occurs at ±64 rad/m correspond 

to a fluid/structure interaction bulge wave. The maxima of the transfer function correspond to 

shear wave propagation. 
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Figure 7. Transfer Function of Radial Displacement Divided by Turbulent 
Boundary Layer Pressure 
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2.4.   THE SOURCE 

The source of energy for the excitation of the viscoelastic material under consideration 

is from the flow of fluid through the small diameter flexible cylinder. It is assumed that the 

flow through the pipe is fully developed, turbulent, and incompressible. The pressure at the 

fluid-solid interface is known as the "wall" pressure. The space-time characteristics of this 

energy are used as input to the structural response model for the viscoelastic material. 

No measurements of the wall pressure for turbulent flow inside a small diameter 

cylinder are known to exist. Spectral measurements in larger cylinders, however, have been 

found to agree well with those made on a flat plate (Bakewell et al., 1962). The source model 

of the normal pressure of the turbulent boundary layer in the cylinder is therefore derived from 

a previously formulated flat plate wall pressure spectrum model (Chase, 1987). Because it is 

convenient to work in the spectral, or Fourier-transform, domain, the model represents the 

two-wavenumber/frequency spectrum of the wall pressure as opposed to the space-time 

correlation function. The spanwise dimension of the flat plate is replaced by the circumferential 

dimension of the cylinder in which the fluid flows. This translation is achieved by applying a 

filter function in the spanwise wavenumber domain to the two-wavenumber/frequency 

spectrum. The result is the circumferentially averaged or "mode 0" component of the 

streamwise wavenumber-frequency spectrum of the pressure inside the cylinder. 

The model of the two-wavenumber/frequency spectrum of wall pressure for 

incompressible flow over a flat plate is given as (Chase, 1987) 

.2 .,3 
\P(k,k2,a>0f = PfV* \cT(k2+ki) K;+(bSy 

k2 + k%+(bÖy 
+ CMk2\,       (144) 

where k is the wavenumber of the streamwise component of the flow (rad/m); &2 *s the 

wavenumber of the spanwise component of the flow (rad/m); v* is the friction velocity (m/s); 

8 is the boundary layer thickness (m); CT, CM, and b are constants; and 

x2 
r2_(CQ0-Uck)    ,  >2 , ,,2 „.„ 
Ä+=—-—-2— + k  +k2 , (145) 

(hv*) 
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where uc is the convection velocity (m/s) and h is a constant. A positive value of k 

corresponds to fluid energy moving downstream. The convection velocity is assumed to be 

equal to the mean flow velocity, U, and they will be used interchangeably in the following 

derivations. The friction velocity by definition is 

v* = J—> (146) 

where rw is the shear stress at the wall (N/m^). The mean wall shear stress inside a cylinder 

is approximated by 

Pfü2f Tw = ^— - (147) 

where/is the friction factor. For smooth pipes, the friction factor is (Fox and McDonald, 

1985) 

0.3164 
/ = (TOT, (14g) (Red)0-25 

where Re^ is the Reynolds number of the flow calculated using the maximum (centerline) pipe 

velocity. The ratio of the centerline velocity to the mean flow is (Fox and McDonald, 1985) 

£ = 2jt  (149) 
U    (n + l)(2» + l) ' V     } 

where U is the centerline velocity. The parameter n is the inverse of the exponent used in the 

power law velocity profile, which is often used to model velocity profiles in turbulent flow. 

For the range of Reynolds numbers in this study, a value of n = 4 is applicable. 

For fully developed pipe flow, the boundary layer thickness 8 is equal to the cylinder 

inner radius. To effectively transform the flow over a flat plate into flow inside a cylinder, a 

filter function is applied to the two-wavenumber/frequency spectrum (equation (144)). The 

filter function is that of a simple linear continuous sensor with a length equal to the inner 

circumference {2nd} of the cylinder. The integral in spanwise wavenumber of the product of 
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the filter function and the two-wavenumber/frequency spectrum provides a new model of the 

mode 0 component of the streamwise wavenumber-frequency spectrum and is given as 

2 
,|2 

\Ptbl(k>c»of = | \P(k,k2,(o0)[ 
sin(^2?r5) 

dk2 . (150) 
k27z8 

Figure 8 is a plot of the wavenumber-frequency spectrum of mode 0 in a pipe. The top 

figure is plotted using a wavenumber range of ±750 rad/m, and the bottom figure is plotted 

using an expanded wavenumber range of ±5000 rad/m to show the effects of convective ridge 

energy. The radius of the pipe is 0.00159 m (1/16 in.), the mean flow is 0.535 m/s, the 

density of the fluid is 1000 kg/m3, the kinematic viscosity is 1.01 x 10"6 m2/s, and the 

frequency is 250 Hz. The constant h is 3, b is 0.75, CT is 0.00467, and CM is 0.155. The 

transfer function (equation (150)) in figure 8 is multiplied by 2% to convert the frequency 

portion of the units from l/(rad/s) to 1/Hz. Although the energy level of the function reaches a 

maximum at the convective wavenumber, this energy is filtered out of the system because of 

the transfer function of the combined fluid and solid structure. The dominant measured effects 

of the fluid occur between -250 and 250 rad/m, which is the unaliased wavenumber region of 

the array. 
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Figure 8. Mode 0 (Axisymmetric) Component of the Wavenumber-Frequency 
Spectrum of the Turbulent Wall Pressure Fluctuations 

30 



TR 11,073 

3.   EXPERIMENT 

The experiment was conducted in an anechoic chamber with the laboratory 

configuration and array previously described. The data were collected in the time domain using 

a Labview Data Acquisition system residing on a Macintosh computer. The time domain data 

were processed as 96 ensemble averages, consisting of 1024-point nonoverlapping fast Fourier 

transforms, with a Hanning window used for conversion to the frequency domain. The spatial 

domain data were processed as a 32-point fast Fourier transform, with three zero pads to every 

one data point. This approach provides a convenient method of interpolating the spatial data in 

wavenumber. 

The surgical tube inner radius (a) is 0.00159 m (1/16 in.), and outer radius (b) is 

0.00238 m (3/32 in.). The distance from the middle of the surgical tube to the surface of the 

urethane (c) is 0.00191 m (3/4 in.). The material properties of the surgical tube and block were 

measured on a Metravib viscoanalyseur and are listed in tables 1 and 2, respectively. The 

water had a density of 1000 kg/m3, a compressional wave speed of 1500 m/s, and a kinematic 

viscosity of 1.01 x 10"6 m2/s. The four terms of equation (1) were assembled and numerically 

integrated from -750 to 750 rad/m. Although the limits of integration in equation (1) are from 

minus infinity to plus infinity, the wavenumber filter rejects most of the high wavenumber 

energy (e.g., \k\ > 0)/uc) and thus allows only low wavenumber energy to be passed to the 

sensors. 

Because the measured displacements are extremely small, a reliable method to calibrate 

the array has not yet been developed. When the theoretical results are compared to the 

experimental results, the maximum value (in wavenumber) of the theoretical results is matched 

to the maximum value of the experimental results. Figures 9 to 15 show these results plotted at 

100, 150, 200, 250, 300, 350, and 400 Hz, respectively. The theory is plotted with a solid 

line and the experimental data with X's. The mean flow in the experiment was 0.535 m/s, with 

a corresponding diameter-based Reynolds number of 1680. Although this is slightly below a 

fully developed turbulent flow Reynolds number of 2000, it is close to the higher Reynolds 
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number of 1500 that has been observed downstream of stenosis in laboratory experiments 

(Jones and Fronek, 1988). 

Table 1. Material Properties of the Surgical Tube 

Compressional Modulus Shear Modulus 

Frequency (Hz) Real (£) N/m2 Imag (£) N/m2 Real (G) N/m2 Imag (G) N/m2 

100 10. x 105 1.5 x 105 3.4 x 105 0.50x 105 

150 10. x 105 1.6 x 105 3.4 x 105 0.54 x 105 

200 10. x 105 1.7 x 105 3.4 x 105 0.57 x 105 

250 10.x 105 1.8 x 105 3.4 x 105 0.60 x 105 

300 10. x 105 1.9 x 105 3.4 x 105 0.64 x 105 

350 10. x 105 2.0 x 105 3.4 x 105 0.67 x 105 

400 10. x 105 2.0 x 105 3.4 x 105 0.67 x 105 

Table 2. Material Properties of the Urethane 

Compressional Modulus Shear Modulus 

Frequency (Hz) Real (£) N/m2 Imag (£) N/m2 Real (G) N/m2 Imag (G) N/m2 

100 2.1 x 105 0.36 x 105 0.70 x 105 0.12 x 105 

150 2.1 x 105 0.48 x 105 0.70 x 105 0.16 x 105 

200 2.1 x 105 0.59 x 105 0.70 x 105 0.20 x 105 

250 1.9 x 105 0.57 x 105 0.64 x 105 0.19 x 105 

300 1.9 x 105 0.67 x 105 0.64 x 105 0.22 x 105 

350 1.8 x 105 0.68 x 105 0.60 x 105 0.23 x 105 

400 1.7 x 105 0.71 x 105 0.57 x 105 0.24 x 105 
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Figure 9. Theoretical and Experimental Wavenumber Responses at 100 Hz 
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Figure 10. Theoretical and Experimental Wavenumber Responses at 150 Hz 
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Figure 11. Theoretical and Experimental Wavenumber Responses at 200 Hz 
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Figure 12. Theoretical and Experimental Wavenumber Responses at 250 Hz 
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Figure 13. Theoretical and Experimental Wavenumber Responses at 300 Hz 
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Figure 14. Theoretical and Experimental Wavenumber Responses at 350 Hz 
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Figure 15. Theoretical and Experimental Wavenumber Responses at 400 Hz 

4.    DISCUSSION 

The turbulent energy present in the embedded tube was measured at the surface of the 

solid with the array. The energy traveled to the surface by means of a propagating shear wave 

that originated at the tube wall. The effects of compressional wave motion were small, and 

these waves did not show up as maxima in the wavenumber cuts. The model was rerun with 

varying compressional wave speeds that produced results similar to the original results. 

Changing the stiffness of the embedded tube had a moderate effect on the dynamics of the 

modeled system. Changing the modeled shear modulus of the embedded tube and/or the solid 

moved the location of the peaks on the wavenumber plots. This factor must be considered 

when the array is used to make in vitro measurements on human arteries. 
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The shapes of all the theoretical frequency plots are in relative agreement with the 

experimental results. The model accurately predicts the shear wave characteristics that are 

present in the solid. In figures 10, 11, and 12, the magnitude of the near-zero wavenumber 

regions do not agree exactly in shape, which is probably due to the curved surface assumption 

used to approximate the flat surface on the urethane block. At low wavenumbers, the 

wavelengths are long and the effect of surface tension is likely to be more significant than at 

higher wavenumbers. This magnitude mismatch could also be the result of sensor-to-sensor 

magnitude and phase mismatch. Additionally, there is some high wavenumber mismatch 

between the data and the model, which could be due to the phase centers of the elements of the 

array not being exactly 0.5 inches apart. Slight phase center mismatch will result in 

experimental results that are shifted slightly in wavenumber. 

The source model assumed fully developed turbulent flow in a long pipe and is derived 

from a flat plate model of the wall pressure spectrum. The accuracy of results based on these 

premises requires quantification. Effects of transitional (laminar to turbulent) flow, 

nonhomogeneous tubes (e.g., one with a stenosis), and small radius (curvature) effects should 

also be examined more closely in further experimentation. 

This research illustrates the need to accurately calibrate the sensors. Because the peak 

value of the measured response was matched to the peak value of the theoretical response, the 

comparison of the experimental and theoretical results is relative. Although this method 

provides a good agreement across wavenumber, a better approach would be to make a 

calibrated measurement and then compare the measured response to the theoretical response. 

The wavenumber-frequency beamformer used in this research was extremely accurate 

in resolving the wavenumber content of the space-time field. However, it is likely that a high 

resolution (adaptive or optimal) beamformer would provide a better signal processing method 

to locate spatial sources. Such a beamformer would incorporate the spherical characteristics of 

the wave and a corresponding loss term. 
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5.    CONCLUSIONS 

The space-time field of flow through a long pipe surrounded by an elastic medium was 

modeled and experimentally verified. A comparison of the model to the experiment showed 

broad-based agreement in wavenumber and frequency. 
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